Extended Loop Region of Hcp1 is Critical for the Assembly and Function of Type VI Secretion System in Burkholderia pseudomallei
نویسندگان
چکیده
The Type VI Secretion System cluster 1 (T6SS1) is essential for the pathogenesis of Burkholderia pseudomallei, the causative agent of melioidosis, a disease endemic in the tropics. Inside host cells, B. pseudomallei escapes into the cytosol and through T6SS1, induces multinucleated giant cell (MNGC) formation that is thought to be important for bacterial cell to cell spread. The hemolysin-coregulated protein (Hcp) is both a T6SS substrate, as well as postulated to form part of the T6SS secretion tube. Our structural study reveals that Hcp1 forms hexameric rings similar to the other Hcp homologs but has an extended loop (Asp40-Arg56) that deviates significantly in position compared to other Hcp structures and may act as a key contact point between adjacent hexameric rings. When two residues within the loop were mutated, the mutant proteins were unable to stack as dodecamers, suggesting defective tube assembly. Moreover, infection with a bacterial mutant containing in situ substitution of these hcp1 residues abolishes Hcp1 secretion inside infected cells and MNGC formation. We further show that Hcp has the ability to preferentially bind to the surface of antigen-presenting cells, which may contribute to its immunogenicity in inducing high titers of antibodies seen in melioidosis patients.
منابع مشابه
Burkholderia mallei and Burkholderia pseudomallei Cluster 1 Type VI Secretion System Gene Expression Is Negatively Regulated by Iron and Zinc
Burkholderia mallei is a facultative intracellular pathogen that causes glanders in humans and animals. Previous studies have demonstrated that the cluster 1 type VI secretion system (T6SS-1) expressed by this organism is essential for virulence in hamsters and is positively regulated by the VirAG two-component system. Recently, we have shown that T6SS-1 gene expression is up-regulated followin...
متن کاملIs Melioidosis a One Health-Neglected Disease in Iran?
According to the several scientific resources, Iran is considered to be among the melioidosis-endemic regions of the world; this is in stark contrast to the domestic stance in Iran, where the risk of melioidosis is speculated only as an emerging infectious disease in a non-endemic area. Recently, we have had devastating flash floods in the most provinces of Iran; the changing of soil structure ...
متن کاملExpression of the Type VI Secretion System 1 Component Hcp1 Is Indirectly Repressed by OpaR in Vibrio parahaemolyticus
The type VI secretion system (T6SS) is bacterial protein injection machinery with roles in virulence, symbiosis, interbacterial interaction, antipathogenesis, and environmental stress responses. There are two T6SS loci, T6SS1 and T6SS2, in the two chromosomes of Vibrio parahaemolyticus, respectively. This work disclosed that the master quorum sensing (QS) regulator OpaR repressed the transcript...
متن کاملDefense Mechanisms of Hepatocytes Against Burkholderia pseudomallei
The Gram-negative facultative intracellular rod Burkholderia pseudomallei causes melioidosis, an infectious disease with a wide range of clinical presentations. Among the observed visceral abscesses, the liver is commonly affected. However, neither this organotropism of B. pseudomallei nor local hepatic defense mechanisms have been thoroughly investigated so far. Own previous studies using elec...
متن کاملBurkholderia pseudomallei Evades Nramp1 (Slc11a1)- and NADPH Oxidase-Mediated Killing in Macrophages and Exhibits Nramp1-Dependent Virulence Gene Expression
Bacterial survival in macrophages can be affected by the natural resistance-associated macrophage protein 1 (Nramp1; also known as solute carrier family 11 member a1 or Slc11a1) which localizes to phagosome membranes and transports divalent cations, including iron. Little is known about the role of Nramp1 in Burkholderia infection, in particular whether this differs for pathogenic species like ...
متن کامل